A toast to health and performance! Beetroot juice lowers blood pressure and the O 2 cost of exercise Leonardo F. Ferreira and Bradley J. Befinke

J Appl Physiol 110:585-586, 2011. First published 23 December 2010; doi: 10.1152/japplphysiol.01457.2010

You might find this additional info useful...

- This article cites 14 articles, 6 of which you can access for free at: http://jap.physiology.org/content/110/3/585.full#ref-list-1
- This article has been cited by 2 other HighWire-hosted articles: http://jap.physiology.org/content/110/3/585#cited-by
- Updated information and services including high resolution figures, can be found at: http://jap.physiology.org/content/110/3/585.full
- Additional material and information about *Journal of Applied Physiology* can be found at: http://www.the-aps.org/publications/jappl

This information is current as of February 20, 2013.

Journal of Applied Physiology publishes original papers that deal with diverse area of research in applied physiology, especially those papers emphasizing adaptive and integrative mechanisms. It is published 12 times a year (monthly) by the American Physiological Society, 9650 Rockville Pike, Bethesda MD 20814-3991. Copyright © 2011 the American Physiological Society. ISSN: 8750-7587, ESSN: 1522-1601. Visit our website at http://www.the-aps.org/.

A toast to health and performance! Beetroot juice lowers blood pressure and the O_2 cost of exercise

Leonardo F. Ferreira and Bradley J. Behnke

Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, Florida Submitted 20 December 2010; accepted in final form 20 December 2010

THE PIONEERING WORK OF SCIENTISTS such as A. V. Hill (7) and August Krogh (10), investigating the dynamics of O_2 uptake during exercise, challenged our understanding of bioenergetics and energy homeostasis. Applied physiologists continue to advance our knowledge of altered energy transfer and efficiency during exercise, as exemplified by the work of Lansley and colleagues (11) in this issue of the *Journal of Applied Physiology*.

Lansley and colleagues (11) demonstrate that dietary NO_3^- , administered in the form of beetroot juice (500 ml/day for 6 days), decreases resting systolic blood pressure (SBP) and O₂ consumption during walking and running. This study is part of a series of investigations, led by Prof. Jones, demonstrating the effects of beetroot juice on cardiovascular and metabolic responses to exercise (1, 2, 15). So what is novel? In this double-blind, placebo-controlled study, the authors selectively remove NO_3^- from beetroot juice to produce a NO_3^- -free juice as placebo. There was no placebo effect in any of the variables measured. Thus the decrease in O₂ uptake and SBP in their investigations can be assigned to dietary NO_3^- , rather than other compounds present in beetroot juice (e.g., polyphenols and/or quercetin). Moreover, the responses occurred in the absence of changes in phosphocreatine (PCr) recovery kinetics (estimate of mitochondrial oxidative capacity). Lastly, the effects of dietary NO_3^- occurred within 2.5 h and promoted an increase in exercise tolerance (11). Whether dietary inorganic NO_3^- is given as beetroot juice (1, 2, 11) or pharmacologically (12), the responses are seemingly consistent across different exercise modalities, although the precise mechanisms remain unclear.

The effects of dietary NO_3^- are thought to be mediated via reduction to biologically active NO_2^- and nitric oxide (NO) molecules (13). Within the vasculature, NO elicits vasodilation through well-known pathways, including activation of soluble guanylate cyclase and subsequent elevations of cGMP levels. Augmentation of NO bioavailability through paradigms such as dietary NO_3^- (in addition to endogenous NO production) may enhance vasodilation and/or O₂ distribution within the contracting skeletal muscle. Specifically, NO elevates the driving pressure of O_2 in the microcirculation during contractions (5), which facilitates transcapillary O_2 flux, as dictated by Fick's law. Interventions that increase the driving pressure of O₂ in the microcirculation blunt PCr breakdown during exercise and prolong exercise tolerance (6, 16). Thus, NO derived from dietary NO_3^- may improve the matching of O_2 delivery $(\dot{Q}o_2)$ to O_2 uptake $(\dot{V}o_2)$ in active motor units, resulting in an

elevated driving pressure of O_2 in the microcirculation during exercise that contributes to diminished PCr degradation and/or enhanced exercise tolerance. This postulate remains to be explored using techniques to measure the driving pressure of O_2 in the microcirculation and $\dot{V}o_2$ -to- $\dot{Q}o_2$ heterogeneity.

In skeletal muscle cells, the potential mechanisms whereby NO-stimulated signaling increases metabolic efficiency are puzzling. Intramyocyte proteins sensitive to NO signaling include those from mitochondria, sarcoplasmic reticulum (SR), and myofibrils. The available evidence briefly discussed below suggests SR Ca²⁺-ATPase (SERCA) as the plausible site downstream of dietary NO₃⁻ responsible for reduced ATP cost of force production during exercise.

NO inhibits mitochondrial respiration (3). In the physiological (nanomolar) range, partial inhibition of cytochrome *c* oxidase enhances oxidative phosphorylation efficiency (3). The outcome of this process is a higher ATP-to-O₂ ratio, which could determine the decreased O₂ cost of exercise. However, total ATP turnover estimated by ³¹P-magnetic resonance spectroscopy was decreased with dietary NO₃⁻ (1). These results do not rule out mitochondria but suggest that we should start our search for mechanisms elsewhere.

Myofibrillar proteins are subject to modifications triggered directly (oxidation) or indirectly (kinase/phosphatase-mediated) by NO signaling. However, we expect that effects of NO on the contractile apparatus would elicit responses opposite to those described by Lansley et al. (11). Specifically, NO decreases actomyosin ATPase activity of permeabilized single fibers, which is accompanied by decreases in force and shortening velocity (14). NO₂⁻ or NO donors increase SR Ca²⁺ release without effects on muscle force or power output (14). Sequestration of the additional Ca²⁺ into the SR by SERCA would raise the ATP demand of force/power generation. On the basis of these findings and the cross-bridge theory of muscular contraction (8), it is difficult to envision a mechanism for reduced ATP cost of force generation involving actinmyosin interactions.

SERCA is a potential candidate responsible for the reduced ATP cost of force production elicited by dietary NO_3^- . The stoichiometry of Ca^{2+} transport to ATP hydrolysis by SERCA is 2:1 in isolated preparations (4). However, when conditions mimic the intracellular environment, the stoichiometry ranges from 0.3 to 0.6 (4). This reflects ATP hydrolysis that is uncoupled from translocation of Ca^{2+} into the SR. One possibility is that dietary NO_3^- increases the stoichiometric efficiency of SERCA. NO decreases SERCA activity and Ca^{2+} uptake in isolated SR membrane preparations (9), but it seems that ATPase activity decreases by a greater extent than Ca^{2+} uptake. Hence, NO may increase the energetic efficiency of Ca^{2+} transport by SERCA, a hypothesis that needs to be examined in detail.

Address for reprint requests and other correspondence: L. F. Ferreira or B. J. Behnke, 100 FLG, Dept. of Applied Physiology and Kinesiology, College of Health and Human Performance, Univ. of Florida, Gainesville, FL 32611-8205 (e-mail: ferreira@hhp.ufl.edu or bjbehnke@hhp.ufl.edu).

586

DIETARY NITRATE, BLOOD PRESSURE, AND EXERCISE ECONOMY

The novel findings of Lansley et al. (11) have several clinical implications (13). A dietary therapy that lowers blood pressure and increases exercise tolerance may obviate the use of expensive drugs with potentially deleterious side effects. However, before beetroot juice can be safely used in the clinical setting, further research is necessary to address questions pertaining to the applied aspects of dietary NO₃⁻, including I) defining the dose dependence, 2) determining the impact on human health of prolonged supplementation, and 3) evaluating the effects of chronic dietary supplementation on adaptations elicited by exercise training. Answers to the following research questions for basic scientists are needed to clarify the mechanisms of action of inorganic NO_3^- . 1) Are the effects of dietary NO_3^- consistent among striated muscles or exclusive to skeletal muscles? If the myocardium responds in a similar fashion to skeletal muscle, beetroot juice will emerge as a powerful therapy for patients with angina. 2) Does the cGMP pathway mediate the effects of inorganic NO_3^- on O_2 cost of force production? 3) What site(s) of action and posttranslational modification(s) of proteins confer the effects of dietary NO_3^- on muscle metabolism?

Investigations such as that performed by Lansley et al. (11) certainly challenge our understanding of integrative physiology. We can be cautiously optimistic that a relatively simple approach for treating cardiovascular perturbations and exercise intolerance is within our sight.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.

REFERENCES

- Bailey SJ, Fulford J, Vanhatalo A, Winyard PG, Blackwell JR, DiMenna FJ, Wilkerson DP, Benjamin N, Jones AM. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J Appl Physiol 109: 135–148, 2010.
- Bailey SJ, Winyard P, Vanhatalo A, Blackwell JR, DiMenna FJ, Wilkerson DP, Tarr J, Benjamin N, Jones AM. Dietary nitrate supplementation reduces the O₂ cost of low-intensity exercise and enhances

tolerance to high-intensity exercise in humans. J Appl Physiol 107: 1144–1155, 2009.

- Clerc P, Rigoulet M, Leverve X, Fontaine E. Nitric oxide increases oxidative phosphorylation efficiency. *J Bioenerg Biomembr* 39: 158–166, 2007.
- de Meis L. Ca²⁺-ATPases (SERCA): energy transduction and heat production in transport ATPases. *J Membr Biol* 188: 1–9, 2002.
- Ferreira LF, Padilla DJ, Williams J, Hageman KS, Musch TI, Poole DC. Effects of altered nitric oxide availability on rat muscle microvascular oxygenation during contractions. *Acta Physiol (Oxf)* 186: 223–232, 2006.
- Haseler LJ, Richardson RS, Videen JS, Hogan MC. Phosphocreatine hydrolysis during submaximal exercise: the effect of FI_{O2}. *J Appl Physiol* 85: 1457–1463, 1998.
- Hill AV, Lupton H. Muscular exercise, lactic acid, and the supply and utilization of oxygen. Q J Med 16: 135–171, 1923.
- Huxley AF. Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7: 255–318, 1957.
- Ishii T, Sunami O, Saitoh N, Nishio H, Takeuchi T, Hata F. Inhibition of skeletal muscle sarcoplasmic reticulum Ca²⁺-ATPase by nitric oxide. *FEBS Lett* 440: 218–222, 1998.
- Krogh A, Lindhard J. The regulation of respiration and circulation during the initial stages of muscular work. J Physiol 47: 112–136, 1913.
- Lansley KE, Winyard PG, Fulford J, Vanhatalo A, Bailey SJ, Blackwell JR, DiMenna FJ, Gilchrist M, Benjamin N, Jones AM. Dietary nitrate supplementation reduces the O₂ cost of walking and running: a placebo-controlled study. *J Appl Physiol*. First published November 9, 2010; doi:10.1152/japplphysiol.01070.2010.
- Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B. Effects of dietary nitrate on oxygen cost during exercise. *Acta Physiol (Oxf)* 191: 59–66, 2007.
- 13. Lundberg JO, Carlstrom M, Larsen FJ, Weitzberg E. Roles of dietary inorganic nitrate in cardiovascular health and disease. *Cardiovasc Res.* In press.
- 14. **Reid MB.** Role of nitric oxide in skeletal muscle: synthesis, distribution and functional importance. *Acta Physiol Scand* 162: 401–409, 1998.
- 15. Vanhatalo A, Bailey SJ, Blackwell JR, DiMenna FJ, Pavey TG, Wilkerson DP, Benjamin N, Winyard PG, Jones AM. Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. Am J Physiol Regul Integr Comp Physiol 299: R1121–R1131, 2010.
- Vanhatalo A, Fulford J, DiMenna FJ, Jones AM. Influence of hyperoxia on muscle metabolic responses and the power-duration relationship during severe-intensity exercise in humans: a ³¹P magnetic resonance spectroscopy study. *Exp Physiol* 95: 528–540, 2010.